

Analyse de données de séquençage haut débit

Vincent Lacroix Laboratoire de Biométrie et Biologie Évolutive INRIA ERABLE

Thématique Multi-Organismes

Technologies pour la santé

9^{ème} journée ITS - 21 & 22 novembre 2017 - Lyon - https://its.aviesan.fr

- Sequencing is cheap
- Applications include
 - De novo genome assembly
 - Resequencing (SNPs, indels, rearrangements)
 - Transcriptome analysis (RNA-seq)
 - Protein-DNA interactions (Chip-seq)
 - Metagenomics
- The difficulty is not to generate data, but to analyse it
 - Many datasets are superficially analysed, or not analysed at all
 - Bioinformatics bottleneck

- Bioinformatics analysis of sequencing data starts by either
 - Mapping your reads to a reference genome
 - De novo assembling your reads
- Downstream analysis depends on the application (RNAseq, ChipSeq, etc)
- For each application, there is not a unique reference pipeline
- Choosing which pipeline to use requires to understand what it captures/misses

Complementarity of assembly-first and mapping-first approaches for alternative splicing annotation and differential analysis from RNAseq data

Clara Benoit-Pilven, Camille Marchet, Emilie Chautard, Leandro Lima, Marie-Pierre Lambert, Gustavo Sacomoto, Amandine Rey, Audric Cologne, Sophie Terrone, Louis Dulaurier, Jean-Baptiste Claude, Cyril Bourgeois, Didier Auboeuf, Vincent Lacroix

Institut Thématique Multi-Organismes Technologies pour la santé

Alternative Splicing

Institut Thématique Multi-Organismes Technologies pour la santé

Alternative Splicing

Institut Thématique Multi-Organismes Technologies pour la santé

Alternative Splicing

Institut Thématique Multi-Organismes Technologies pour la santé

RNAseq data

Institut Thématique Multi-Organismes Technologies pour la santé

RNAseq data

Alternative Splicing and RNA-seq data

- Gencode Annotations : 60 000 genes, 3 transcripts per gene.
- Assessing which gene/transcript is expressed in which tissue/condition can in principle be done through RNAseq
- The main challenges are:
 - Reads are short (100nt) and can be assigned to multiple transcripts (1000nt)
 - Some transcripts are annotated, some are novel
 - Some transcripts are highly expressed, many are poorly expressed

Annotation and Differential Analysis

- Annotation: Identify and quantify all transcripts present in a given condition
- Differential Analysis : Assess which genes are differentially spliced across conditions (treatment / control, population 1 / population 2, disease / control)

Two approaches to assemble

Institut Thématique Multi-Organismes Technologies pour la santé

What is the overlap between the

predictions of the two approaches ?

Identify pros and cons of assembly-first and mapping-first methods

ightarrow Comparison done on alternative skipped exon (ASE) events only

Public dataset (ENCODE) from neuroblastoma SK-N-SH cell line with c without retinoic acid (RA) treatment

RA treatment during 2 days

Institut Thématique Multi-Organismes Technologies pour la santé

Compared pipelines

Institut Thématique Multi-Organismes Technologies pour la santé

Mapping-first approach finds many unfrequent variants

Institut Thématique Multi-Organismes Technologies pour la santé

Mapping-first approach finds many unfrequent variants

Institut Thématique Multi-Organismes Technologies pour la santé

The overlap between methods increases

when unfrequent variants are filtered out

Unfrequent variant = less than 5 reads, or relative abundance < 10 %

Institut Thématique Multi-Organismes Technologies pour la santé

Some abundant transcripts are systematically missed by one approach

Experimental Validations

Annotation summary

Mapping-first is stronger for rare variants and exonised Alus Assembly-first is stronger for novel variants and recent paralogs

Should I care about these differences ? Does it have an impact on my differential analysis ?

Statistical Analysis

- Count regression with negative binomial distribution
- Generalised linear model, 2 way design, with interaction

- Target hypothesis: $H_0 : \{(\alpha\beta)_{ij} = 0\}$
- Likelihood ratio test
- P-values adjusted with benjamini-hochberg procedure

Institut Thématique Multi-Organismes Technologies pour la santé

Comparison after differential analysis

AS events predicted by both pipelines have some quantification differences, especially for complex events (red dots)

pour les sciences de la vie et de la santé

Comparison to other methods

Institut Thématique Multi-Organismes

Technologies pour la santé

atique Multi-Organismes echnologies pour la santé

Conclusion & Perspectives

Annotating alternative splicing with a single approach leads to missing a large number of candidates.

These candidates cannot be neglected, since many of them are differentially regulated across conditions.

We advocate for the use of a combination of both mappingfirst and assembly-first approaches for annotation and differential analysis of alternative splicing from RNA-seq data. **UNION**

INTERSECTION

Software availability

• http://kissplice.prabi.fr

KisSplice

A local transcriptome assembler for SNPs, indels and AS events

HOME PUBLICATIONS DOWNLOAD TOOLS GALAXY

DOCUMENTATION TRAINING CONTRIBUTORS CONTACT FAQ

Latest News

- 2017-05-12: kissDE version 1.5.0 Release
- 2017-02-28: Our AMB paper is out.
- 2016-07-31: Our NAR paper is out. Full protocol to reproduce the results is available here

Recent paralogs

Missed by FaRLine RASA4 and RASA4B are recent paralogs Multi-mapping reads are discarded by mapping-first approaches KisSplice co-assembles the two paralogs, and states that they collectively produce two transcripts Confirmed experimentally by RT-PCR

Institut Thématique Multi-Organismes Technologies pour la santé

Exons overlapping repeats

Missed by KisSplice

RAB5C contains an exonised Alu

Since this exon is annotated, FaRLine finds it

KisSplice fails to assemble it, because the bubble has more than 5 branches

(i.e. too many Alu copies in the dataset)

Confirmed experimentally by RT-PCR

Complex events

Missed by KisSplice

The skipping of E6 with E4 and E7 as flanking exons is reported only by FaRLine

KisSplice discards E4-E6 junction because it is supported only by 55 reads, which is less then 2 % of the read flow leaving E4